onsemi

High Voltage Fast Switching Transistor

FJD5304D

Features

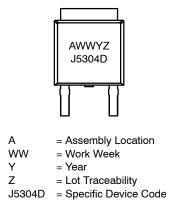
- Built-in Free Wheeling Diode
- Wide Safe Operating Area
- Small Variance in Storage Time
- Suitable for Electronic Ballast Application
- This is a Pb-Free Device

ABSOLUTE MAXIMUM RATINGS (T _a = 25 °C, unless otherwise noted)						
Symbol	Parameter		Value	Unit		
V _{CBO}	Collector-Base Voltage		700	V		
V _{CEO}	Collector-Emitter Voltage		400	V		
V _{EBO}	Emitter-Base Voltage		12	V		
۱ _C	Collector Current (DC)		4	А		
I _{CP}	Collector Current (Pulse) (Note 1)		8	А		
I _B	Base Current (DC)		2	А		
I _{BP}	Base Current (Pulse) (Note 1)		4	А		
P _C	Total Device Dissipation	$T_c = 25 \ ^{\circ}C$	30	W		
		T _a = 25 °C	1.25	w		
TJ	Junction Temperature		150	°C		
T _{STG}	Storage Junction Temperature Range		-55 to 150	°C		

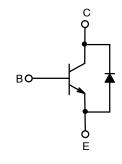
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Pulse test: $PW = 300 \ \mu$ s, Duty Cycle = 2% Pulsed

T. T dise test. T $W = 500 \ \mu$ s, Duty Cycle = 2/6 T dised

THERMAL CHARACTERISTICS (T_a = 25 °C, unless otherwise noted)


Symbol	Parameter	Value	Unit	
R _{θja}	Thermal Resistance Junction to Ambient (Note 2)	99	°C/W	

2. Device mounted on minimum pad side.



DPAK3 6.10x6.54x2.29, 4.57P CASE 369AS

MARKING DIAGRAM

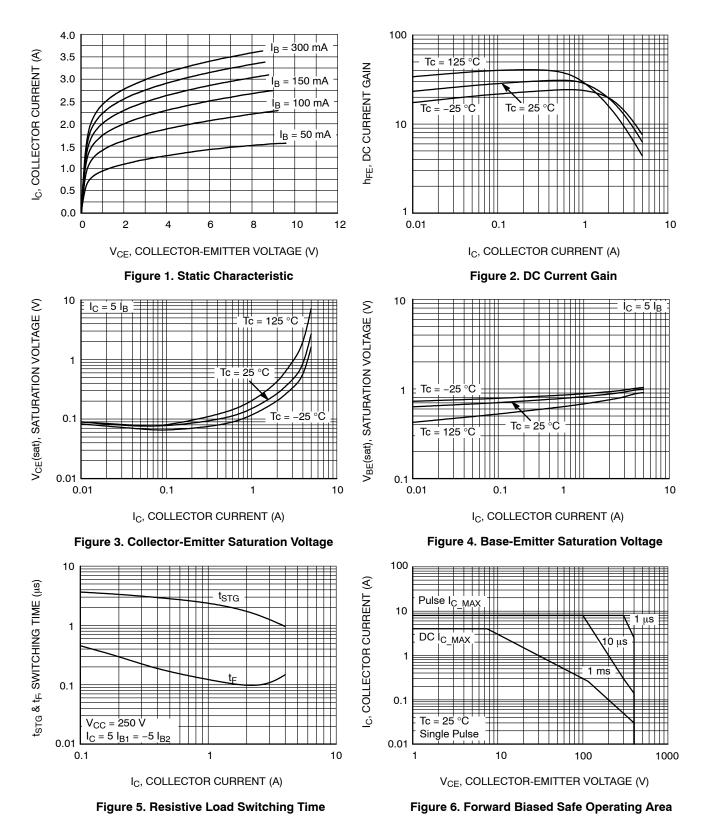
EQUIVALENT CIRCUIT

ORDERING INFORMATION

Device	Package	Shipping [†]		
FJD5304DTF	DPAK3	2000 / Tape & Reel		

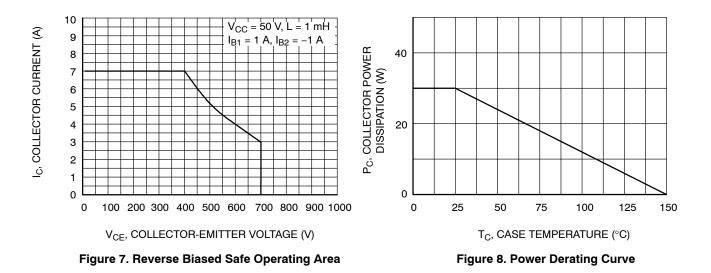
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

FJD5304D

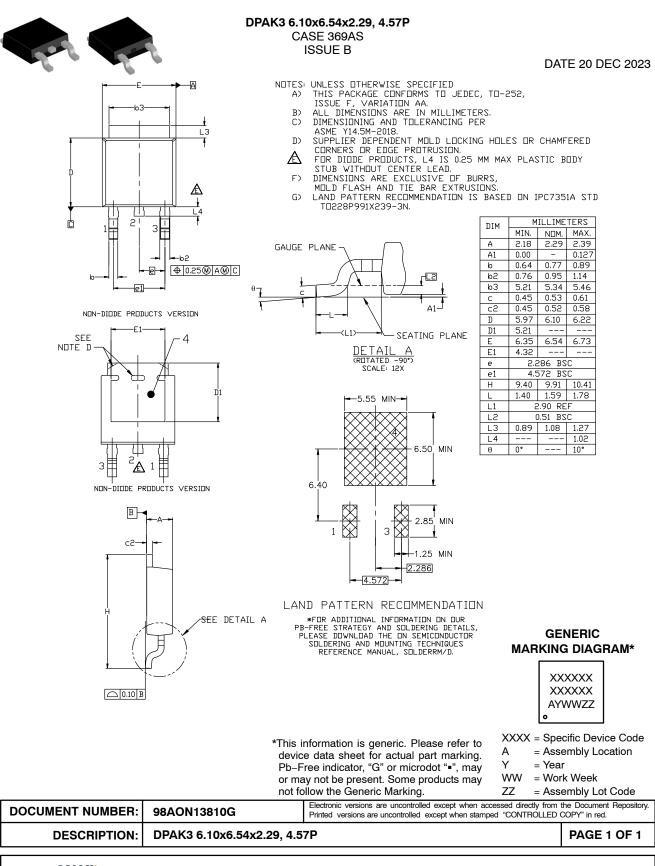

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
BV _{CBO}	Collector-Base Breakdown Voltage	I _C = 1 mA, I _E = 0	700	-	-	V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 5 mA, I _B = 0	400	-	-	V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E = 1 mA, I _C = 0	12	-	-	V
I _{CES}	Collector Cut-off Current	V _{CB} = 700 V, I _E = 0	-	-	100	μΑ
I _{CEO}	Collector Cut-off Current	V _{CB} = 400 V, I _B = 0	-	-	250	μΑ
I _{EBO}	Emitter Cut-off Current	V _{EB} = 12 V, I _C = 0	-	-	1	mA
h _{FE}	DC Current Gain	V _{CE} = 5 V, I _C = 10 mA	10	-	-	
		V _{CE} = 5 V, I _C = 2.0 A	8	-	40	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 0.5 A, I _B = 0.1 A	-	-	0.7	V
		I _C = 1.0 A, I _B = 0.2 A	-	-	1.0	V
		I _C = 2.5 A, I _B = 0.5 A	-	-	1.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 0.5 A, I _B = 0.1 A	-	-	1.1	V
		I _C = 1.0 A, I _B = 0.2 A	-	-	1.2	V
		I _C = 2.5 A, I _B = 0.5 A	-	-	1.3	V
t _{STG}	Storage Time	$\begin{array}{l} V_{CLAMP} = 200 \text{ V}, \text{ I}_{C} = 2.0 \text{ A}, \\ \text{ I}_{B1} = 0.4 \text{ A}, \text{ V}_{BE}(\text{off}) = -5 \text{ V}, \text{ L} = 200 \ \mu\text{H} \end{array}$	-	0.6	-	μs
t _F	Fall Time		-	0.1	-	μs
t _{STG}	Storage Time	V_{CC} = 250 V, I_{C} = 2.0 A, I_{B1} = 0.4 A, I_{B2} = –0.4 A, T_{P} = 30 μs	-	-	2.9	μs
t _F	Fall Time		-	0.2	-	μs
V _F	Avalanche Energy	I _F = 2 A	-	-	2.5	V

ELECTRICAL CHARACTERISTICS (T_a = 25 °C unless otherwise noted)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


FJD5304D

TYPICAL PERFORMANCE CHARACTERISTICS



FJD5304D

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

<u>onsemi.</u>

onsemi and ONSEMI: are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>